N3BULA3 Simulation Project — MARS-INDUS-001

Seeded Mars Colony with planet-scale, four-level mining logistics — Hybrid ABM + DES + stock/flow.

Title: Seeded Mars Colony Version: 1.0 (Draft) Owner: N3BULA3 Simulation Lab Mode: ABM + DES + Resource-Flow Timebase: 1 tick = 10 minutes Units: SI Locale: UK English

1) Mission Objectives

Bootstrap a viable, power-positive colony using six seed robots:

  • 2× ARD — Autonomous Rock Drills
  • 2× AOC — Autonomous Ore Carriers
  • 2× A3P — Autonomous 3D Printers

Scale entirely in-situ via regolith feedstock and MRE metal extraction. Operate a 4-level planet-wide mining and logistics chain from sites → spaceport → LMO → Earth.

2) Scope & Layering

  • Colony: habitat, life-support, power, ISRU, smelting/MRE, fabrication.
  • Mining: prospecting, drilling, fragmentation, loading, backfill.
  • Logistics (4-level): L1 sites → L2 sectors → L3 regions (rail) → L4 spaceport.
  • Orbital/Egress: chemical or coilgun to LMO; autonomous freighter to Earth.

3) World Model & Map

  • Hex grid (≈50 km), ore/ice/dust/insolation tags.
  • Graphs: traversal routes; power bus; reliability/faults.
  • Dynamics: diurnal/seasonal, dust storms, temp swings, comms latency.

4) Agents & Assets (Seeds)

ARD ×2

Percussive/rotary drill, core sampling, sonic/thermal fragmentation, self-relocation.

State: IDLE → MOVE → SETUP → DRILL → EXTRACT → MAINTAIN/FAULT

AOC ×2

5–10 t payload, swappable batteries, convoy mode.

State: QUEUE → LOAD → HAUL → UNLOAD → CHARGE → MAINTAIN/FAULT

A3P ×2

Large-format regolith sintering, metal/polymer printing.

Products: spares, rail, frames, PV masts, shells, new modules.

5) Processes

  • Prospect → plan (multispectral, grade, route risk)
  • Drill → fragment → load (backfill overburden)
  • Haul L1→L2 by AOCs; sector dumps absorb variability
  • Rail L2→L3 via printed rail & autonomous trains
  • Beneficiation @ spaceport; tailings → berms/shielding
  • MRE smelt/refine (Fe/Al/Si) with O₂ co-product
  • Propellants: Sabatier + electrolysis (CH₄/O₂, H₂/O₂)
  • Egress: canisters → chemical or mass driver → LMO
  • Maintenance: predictive; on-demand printed spares

6) Power & Energy

  • Gen: regolith-anchored solar + printed mirrors; optional compact fission.
  • Storage: structural batteries, Li-ion cassettes, O₂ tanks, thermal stores.
  • Controller: life-support ≫ comms ≫ thermal ≫ charging ≫ printers ≫ trains ≫ smelting.

7) Materials & Manufacturing

  • Regolith → MRE → metals + O₂
  • CO₂ + H₂ → Sabatier → CH₄ + H₂O → propellants
  • Metals → rolling/extrusion → rail, chassis
  • Geopolymers → panels, sleepers, berms
  • QC: coupons, NDT, thermal cycling proofs

8) Autonomy & Control

  • Onboard mission planning; low-bw supervision
  • Fleet orchestration (market-based or MILP)
  • Dust-robust perception; mesh UHF & optical hubs

9) Simulation Mechanics

  • ABM: ARDs, AOCs, A3Ps, trains, tugs, depot/power managers
  • DES: queues at loaders/dumps/chargers/printers/smelters; faults; weather
  • Stock/Flow: ore grades, energy, propellants, spares, print capacity
  • Failure: Weibull lifetimes; dust multipliers; thermal fatigue
  • Learning: optional RL/bandits for routing & maintenance

10) KPIs & Outputs

  • Throughput (t/day, t/launch, t/month)
  • Energy intensity (kWh/t by stage)
  • Utilisation (ARD/AOC/Printer/Rail)
  • Reliability (MTBF/MTTR, abort probability)
  • Economics (energy-costed ore, print vs import)
  • Colony health (power margin, propellants, spares)

11) Scenarios (switchable)

S-A Seed • S-B Solar-Only • S-C Compact Fission • S-D High-Grade Cluster • S-E Low-Grade Diffuse • S-F Mass Driver • S-G Severe Dust

12) Bootstrap Timeline

  • P0 (Sol 0–30): land, pads, PV skids, initial bake/charge
  • P1 (31–120): first ore, print spares, micro-smelter & MRE, O₂ surplus
  • P2 (121–300): extra ARDs/AOCs; first rail to sector dump
  • P3 (301–600): regional rail spine; spaceport beneficiation; propellants at scale
  • P4 (≥600): first orbital shipment; expand regions

13) Roles & State Machines

  • ARD: IDLE→MOVE_TO_SITE→SETUP→DRILL→FRAGMENT→LOAD_REQUEST→WAIT_CARRIER→RESUME/RELOCATE→MAINTENANCE
  • AOC: QUEUE_AT_SITE→LOAD→HAUL_TO_SECTOR→UNLOAD→CHARGE/SWAP→RETURN→MAINTENANCE
  • A3P: PLAN_JOB→PREP_FEEDSTOCK→PRINT→POST-PROCESS→QC→DEPLOY→MAINTENANCE
  • TRAIN: ASSEMBLE→DEPART→WAYSTATION→ARRIVE→UNLOAD/LOAD→RETURN

14) Configuration (YAML excerpt)

timebase_minutes: 10
seed_assets: { ARD: 2, AOC: 2, A3P: 2 }
targets: { export_tonnes_per_month: 500, first_launch_no_later_than_sol: 650 }
power:
  solar_watt_per_m2: 300
  farm_initial_m2: 1200
  storage_mwh: 2.0
  fission_enabled: false
logistics:
  aoc_payload_t: 8
  l1_to_l2_avg_km: 12
  l2_to_l3_avg_km: 85
  l3_to_spaceport_avg_km: 240
printing:
  printers_parallel: dynamic
  print_rate_kg_per_hour: 6.0
  metal_fraction: 0.18
failure_models:
  dust_multiplier: 1.3
  mtbf_hours: { ARD: 600, AOC: 800, A3P: 700 }

15) Validation & Experiments

  • Sanity: mass/energy conservation; queue stability; ≥15% power margin
  • Stress: 30-sol dust storm; dual ARD faults; printer bottleneck; rail blockage
  • Sensitivity: ore grade, print rate, storage, MTBF, storms
  • Success: exports ≥ target for ≥120 sols; no life-support brownouts; ≥30-sol spares

16) Feasibility Discussion

Strengths

  • ISRU leverage: print rail, frames, spares; minimal Earth lift after seeding.
  • Hierarchical buffering: sector dumps smooth variability.
  • O₂ co-product: supports life-support and propellants.

Challenges & Risks

  • High energy intensity; solar vulnerability to dust; storage/fission trade-offs.
  • Materials chain QC under Martian thermal cycles.
  • Reliability/autonomy with only six seeds; early single-point failures.
  • Dust/abrasion on seals, bearings, optics.
  • Egress economics: favour concentrates/ingots over raw ore.

Pragmatic Outlook

  • Near-term: regional demonstrator is credible with compact fission or very large PV+storage.
  • Planet-scale: requires many more assets, km-scale rail, resilient power grids.
  • Export mix: oxygen + refined metals/high-value concentrates.

17) How to Use in N3BULA3

  • Import YAML; set map seed & scenario toggles.
  • Run bootstrap; track power margin, print capacity, spare-part debt.
  • Scale-out; extend rail; watch queue stability/asset utilisation.
  • Egress trade-offs: chemical vs mass driver vs tug cadence.
  • Monte Carlo: vary storms/failures/grades; harvest KPI distributions.

18) Deliverables

  • Simulation package (config + presets + agent libs)
  • Dashboards (throughput, energy, reliability, cadence, risk)
  • Decision brief (power architecture, printer farm size, export mix)

19) Recommendations

  • Enable compact fission for early realism.
  • Print extra AOCs within first 120 sols.
  • Add beneficiation prior to launch.
  • Build dust-hardening kits into standard print queue.
  • Stage a regional pilot before planet-wide runs.